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Abstract: Inorganic chemistry laboratories act as core facilities for inorganic material synthesis, 

elemental analysis, and chemical reaction research. Nevertheless, the widespread use of reactive 

inorganic reagents (e.g., strong oxidants, reducing agents, heavy metal salts), corrosive substances, 

and high-temperature/pressure experimental processes often results in safety accidents including 

chemical reactions out of control, reagent splashes, toxic gas emissions, and equipment corrosion. 

Conventional monitoring systems, reliant on manual inspections and single-sensor alarms, suffer 

from detection delays, high false alarm rates, and inadequate emergency response. To address this, 

this paper proposes an intelligent safety monitoring and emergency decision-making system based 

on multimodal deep learning. It integrates visual imagery with multidimensional sensor data 

(temperature, humidity, toxic inorganic gas concentration, corrosive gas partial pressure, heavy metal 

ion concentration) to construct an enhanced YOLOv8-CBAM object detection model and a 

bidirectional long short-term memory (BiLSTM) temporal prediction model. Attention mechanisms 

enable multimodal data fusion, culminating in an emergency decision module designed through rule-

based and case-based reasoning. Experimental results demonstrate that the enhanced YOLOv8-

CBAM model achieves a 96.8% mAP@0.5 for detecting reaction flaring, corrosive splashing, toxic 

smoke, and non-compliant operations, representing a 3.2% improvement over the original YOLOv8. 

The BiLSTM model achieved a low MAE of 0.023 for sensor data prediction, outperforming 

traditional LSTM; post-multimodal fusion, safety state classification accuracy reached 98.2%, with 

the system's average emergency response time controlled within 12 seconds. This effectively 

enhances laboratory safety prevention and emergency response capabilities. 

1. Introduction  

With the continuous deepening of research in fields such as inorganic material preparation, 

coordination chemistry, and industrial catalysis, the safety management of inorganic chemistry 

laboratories confronts severe challenges. These laboratories involve a large number of reactive 

inorganic compounds, corrosive reagents (e.g., concentrated sulfuric acid, hydrofluoric acid), high-

temperature heating equipment, and gas cylinder storage, featuring prominent risks such as sudden 

chemical reactions, toxic heavy metal pollution, and pressure vessel hazards, along with complex and 

variable experimental processes and frequent personnel flow. Traditional safety management models 

reliant on manual inspections and single-sensor monitoring struggle to meet demands for real-time risk 

perception and rapid emergency response[1]. In recent years, breakthroughs in multimodal deep 

learning technology have provided novel theoretical frameworks and technical pathways to address 

this challenge. By integrating heterogeneous data from multiple sources—including visual, infrared, 

gas sensing, and equipment logs—this technology enables comprehensive intelligent perception of 

laboratory environments, personnel behaviour, equipment status, and chemical storage. It has 

demonstrated significant advantages in fields such as biomedical diagnostics and chemical safety 

monitoring. However, existing research mainly concentrates on industrial production environments or 

single-modality monitoring analysis. There is a lack of systematic exploration of multi-modal 
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collaborative monitoring and intelligent decision-making mechanisms suitable for the specific 

scenarios of inorganic chemistry laboratories (e.g., special risks such as anhydrous reaction systems, 

metal hydride storage, and fluoride-containing waste treatment)[2]. Concurrently, laboratory safety 

management is undergoing a transformation from reactive post-incident handling to proactive early 

warning, and from experience-driven to data-driven intelligence[3]. There is an urgent need to develop 

intelligent systems capable of autonomously analysing potential risks, predicting accident progression 

trends, and generating optimal emergency response decisions. Consequently, developing a multimodal 

deep learning-based intelligent safety monitoring and emergency decision-making system for 

inorganic chemistry laboratories addresses pressing practical challenges: low maturity in research 

laboratory safety management and the absence of comparable commercial solutions. This initiative 

also represents a crucial step towards deepening the integration of artificial intelligence within material 

sciences, safeguarding researchers' lives, and ensuring the stable output of scientific research. It holds 

significant theoretical innovation value and broad application prospects[4]. 

2. System Architecture 

2.1 Design of a Five-Layer Architecture for Safety Monitoring and Emergency Decision-

Making Systems in Inorganic Chemistry Laboratories 

This paper's proposed intelligent safety monitoring and emergency decision-making system adopts 

a layered architecture design. Through vertical coordination across the perception layer, data pre-

processing layer, multimodal modelling layer, emergency decision-making layer, and application 

layer, it establishes a complete closed-loop system spanning from data acquisition to intelligent 

decision-making. The perception layer deploys high-definition network cameras[5] (4 megapixel 

resolution, 25fps frame rate) alongside multi-parameter sensors (temperature and humidity range: -

40 to 85°C / 0 to 100% RH; toxic inorganic gas detection range: 0 to 100ppm; corrosive gas partial 

pressure range: 0-5kPa; heavy metal ion concentration detection range: 0-10ppm), enabling 

synchronous collection of visual imagery and environmental parameters (1Hz sampling frequency) 

from critical laboratory areas such as reagent cabinets (for strong oxidants/reducing agents), acid-

resistant workbenches, and gas cylinder cabinets. This establishes a foundation of multi-source, 

heterogeneous data for subsequent analysis. The data preprocessing layer employs dedicated modules 

for each heterogeneous data type: image data undergoes Gaussian filtering for denoising, 

normalisation, random flipping, and brightness adjustment to enhance model robustness; sensor time-

series data adopts a 3σ rule to eliminate outliers, with moving average filtering smoothing transient 

fluctuations—especially for sudden changes in parameters such as toxic heavy metal ion 

concentration and corrosive gas partial pressure—to extract valid features, ensuring input data quality 

and consistency. The multimodal model layer, serving as the core analytical engine, integrates an 

enhanced YOLOv8-CBAM model with a BiLSTM model[6]. The former incorporates convolutional 

block attention mechanisms to strengthen visual feature capture for dangerous phenomena such as 

reaction flaring, corrosive reagent splashing, and toxic smoke emission, as well as visual 

identification of non-compliant operations including failure to wear acid-resistant gloves, improper 

handling of gas cylinders, and unauthorized modification of reaction conditions. The latter leverages 

bidirectional long short-term memory networks to uncover temporal dependencies in sensor 

parameters, predicting environmental state evolution. Ultimately, an attention fusion module 

dynamically weights and integrates visual and sensor features, outputting a three-tier classification of 

laboratory safety status: normal, warning, or hazardous. Emergency Decision Layer This layer 

establishes an intelligent decision mechanism through a rule-based inference engine and historical 

case repository. It automatically triggers predefined emergency response protocols (e.g., initiating 

acid-resistant ventilation during corrosive reagent leakage) based on the model's safety classification, 

while matching optimal mitigation strategies. This achieves an automated transition from incident 

detection to decision generation. The application layer provides end-users with diverse interactive 

interfaces. Monitoring terminals display real-time panoramic surveillance views and parameter 

curves, while audible and visual alarms deliver instant local warnings. Mobile applications push 
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anomaly notifications to management personnel. Concurrently, device control interfaces enable 

remote interlocking control of actuators such as acid-resistant fume cupboards and fire suppression 

systems. This collectively forms an intelligent safety management system encompassing the entire 

‘perception-analysis-decision-action’ process[7]. 

2.2 Key Technology Pathways 

The system implementation relies on the synergistic innovation of three core technological 

pathways. Firstly, addressing the heterogeneity of visual and sensor data in sampling frequency and 

semantic granularity, a time-stamp-based precise alignment mechanism achieves multimodal data 

synchronisation. This spatially and temporally registers a 25fps image frame stream (one frame every 

0.04 seconds) with 1Hz sensor temporal data. Interpolation-based synchronisation and buffer queue 

management ensure temporal and spatial consistency and correlation across modalities, establishing 

the foundational data for subsequent fusion analysis. Secondly, addressing dual constraints of 

resource-constrained laboratory edge devices and real-time responsiveness, Tensor RT is employed 

for lightweight deployment of trained deep learning models through graph optimisation, layer fusion, 

and accuracy calibration. This significantly reduces model inference latency and memory 

consumption, enabling millisecond-level detection on edge computing platforms such as NVIDIA 

Jetson AGX to ensure monitoring system timeliness. Finally, an emergency decision-making closed-

loop mechanism was established, integrating the entire automated workflow from multimodal hazard 

identification and risk grading to equipment interlock control and alarm notification dissemination. 

This enables end-to-end emergency response, effectively reducing human decision-making delays 

while enhancing proactive and intelligent laboratory safety management[8]. These three interlinked 

technical pathways collectively underpin the system's reliable operation within complex experimental 

environments. 

3. Multimodal Deep Learning Model Construction 

3.1 Visual Inspection Model: Enhanced YOLOv8 - CBAM 

To address the issues of insufficient detection accuracy for small objects and high false positive 

rates caused by complex background interference in laboratory settings, this paper proposes structural 

enhancements to the YOLOv8 model. While the original YOLOv8 model demonstrates excellent 

performance in general object detection tasks, leveraging the CSPDarknet53 backbone and PANet 

feature fusion architecture, it exhibits weaknesses in extracting features from small targets—such as 

3–8 cm corrosive reagent spill traces—within inorganic chemistry laboratory environments. 

Furthermore, it is susceptible to interference from complex background noise, including reagent 

labels and instrument reflections. To address this, this study integrates a Convolutional Block 

Attention Module (CBAM) after the PANet feature fusion layer within the model's Neck network. 

This enhances the model's ability to focus on key target regions. CBAM achieves adaptive feature 

optimisation through a cascaded mechanism of channel attention and spatial attention: channel 

attention employs global average pooling and max pooling to reduce spatial dimensions, generating 

channel weights via a two-layer fully connected network. The formula is as follows: 

𝑀𝑐(𝐹) = 𝜎 (MLP(AvgPool(𝐹)) + MLP(MaxPool(𝐹)))                       (1) 

Where σ denotes the sigmoid function and F represents the input feature map; spatial attention 

employs average pooling and max pooling concatenation along the channel dimension, with spatial 

weights output via a convolutional layer, formulated as: 

𝑀𝑠(𝐹′) = 𝜎(𝐶𝑜𝑛𝑣([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹′); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹′)])                         (2) 

This enhancement effectively improves the distinction between target features and complex 

backgrounds by inserting the CBAM module after feature fusion at each layer of PANet. Model 

training employs a strategy combining a proprietary dataset with publicly available data: 8,000 

laboratory scene images were collected (including 2,000 images of reaction flaring/corrosive splashing, 
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1,500 images of toxic smoke from inorganic reactions, 2,500 images of non-compliant operations such 

as improper gas cylinder handling and lack of acid-resistant protection, and 2,000 normal scene 

images), supplemented by 5,000 images from the FIRE-SMOKE-DATASET public dataset and 3,000 

images from the inorganic chemical safety accident dataset. After annotation, these were partitioned 

into training, validation, and test sets in an 8:1:1 ratio. The training environment was configured with 

an NVIDIA RTX 4090 GPU. The PyTorch 2.1 framework was employed, with the AdamW optimiser 

selected. The initial learning rate was set to 0.001 and dynamically adjusted using a cosine annealing 

strategy. A batch size of 16 was used, with 100 training iterations to ensure sufficient model 

convergence[9]. 

3.2 Sensor Sequence Prediction Model: BiLSTM 

Given the inherent strong temporal correlation and non-linear dynamic evolution characteristics 

of laboratory sensor data (such as toxic inorganic gas concentrations, corrosive gas partial pressure, 

temperature and humidity), this paper employs a bidirectional long short-term memory network 

(BiLSTM) to construct a time series prediction model. Compared to traditional LSTMs, which can 

only capture the temporal dependence of historical data on the current state through a single forward 

pass, the BiLSTM simultaneously extracts bidirectional contextual information from past and future 

time points via parallel stacked forward and backward LSTM units. This effectively handles complex 

evolution patterns—such as those observed in hydrofluoric acid leakage scenarios where 

concentrations rise slowly before declining under acid-resistant ventilation intervention—
significantly enhancing prediction accuracy. The model adopts a three-layer architecture: the input 

layer reconstructs pre-processed sensor data into feature vectors via time windows, selecting the 

preceding 10 seconds of historical data to predict the subsequent 5 seconds, forming an input tensor 

of dimensions [batch size, 10, 5] (where 5 corresponds to feature dimensions such as temperature, 

humidity, toxic inorganic gas concentration (e.g., chlorine, ammonia), corrosive gas partial pressure, 

and heavy metal ion concentration); The hidden layer employs a two-layer BiLSTM structure, each 

with 128 hidden units and a tanh activation function, incorporating dropout regularisation with a 

coefficient of 0.2 to mitigate overfitting. The output layer maps through a fully connected layer to 

generate predictions of dimension [batch size, 5, 5], enabling simultaneous multi-parameter 

forecasting. The training dataset was constructed by collecting data from typical laboratory scenarios, 

including simulated leaks of corrosive reagents (e.g., hydrofluoric acid), uncontrolled exothermic 

reactions of inorganic compounds, abnormal gas cylinder pressure, heavy metal solution spills, and 

normal operations. It comprises 100,000 high-fidelity time-series data samples, partitioned into 

training, validation, and test sets at a ratio of 7:2:1. Mean squared error (MSE) is employed as the 

loss function to optimise prediction bias, ensuring the model's precise capture of dynamic 

environmental changes[10]. 

3.3 Multimodal Fusion Module: Attention Fusion 

The core of multimodal fusion lies in achieving adaptive weight allocation and deep collaborative 

representation of heterogeneous information. This paper designs a dynamic fusion strategy based on 

attention mechanisms to fully exploit the complementarity between visual and sensor modalities. 

Specifically, the fusion module first extracts features separately from the improved YOLOv8-CBAM 

model and the BiLSTM model. The object detection confidence vectors output by the former are 

encoded as visual features represented as: 

𝐕 ∈ ℝ1×3                                                       (3) 

Simultaneously, the sensor parameter prediction error vector generated by the latter is abstracted 

into a sensor feature representation as follows: 

𝑆 ∈ ℝ1×3                                                      (4) 

Subsequently, the correlation between bimodal features is modelled via the learnable attention 

weight matrix W. The Softmax function is employed to normalise and compute the contribution 
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weights for each modality. The visual modality weight is defined as: 

𝑊𝑉 =
exp(𝑉⋅𝑊)

exp(𝑉⋅𝑊)+exp(𝑆⋅𝑊)
                                              (5) 

The sensor mode weight is defined as WS = 1 − WV. This mechanism enables adaptive optimisation 

of weight distribution during training, thereby amplifying the decision-making influence of critical 

modes. Ultimately, the fused feature vector F is obtained through weighted summation: F = WV · V 

+ WS · S. This achieves the organic integration of visual semantic information with sensor temporal 

information, providing a unified representation for subsequent emergency decision-making layers 

that combines global perception with fine-grained predictive capabilities. 

4. Experimental Results and Analysis 

4.1 Experimental Datasets and Evaluation Metrics 

To comprehensively evaluate system performance, this paper constructs an experimental dataset 

encompassing visual and sensor modalities and establishes a multidimensional evaluation metric 

system. The visual dataset comprises 13,000 high-definition laboratory images at 1920×1080 

resolution, meticulously annotated using LabelImg. Target categories include ‘reaction flaring’, 

‘corrosive reagent splashing’, ‘toxic inorganic smoke’, ‘non-compliance with acid-resistant gloves’, 

and ‘improper gas cylinder operation’. This ensures diversity and realism in the training samples. The 

sensor dataset generates 100,000 time-series samples by simulating four typical scenarios: normal 

operation, leakage of corrosive/inorganic toxic reagents, uncontrolled exothermic reactions, and 

abnormal gas cylinder pressure. Key parameters—including temperature, humidity, toxic inorganic 

gas concentration, corrosive gas partial pressure, and heavy metal ion concentration—are recorded at 

a 1Hz sampling rate, comprehensively capturing environmental response patterns across varying risk 

levels. Regarding evaluation metrics, the visual detection model employs Precision, Recall, and 

mAP@0.5 to comprehensively assess target localisation and classification accuracy. The time-series 

prediction model utilises Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to 

quantify sensor parameter prediction deviations. The multimodal fusion module evaluates overall 

decision-making performance through safety state classification accuracy and F1 scores, establishing 

a comprehensive assessment framework spanning from single-modal analysis to cross-modal fusion. 

4.2 Clinical significance 

To validate the effectiveness of the improved YOLOv8-CBAM model, comparative experiments 

were conducted, with results presented in Table 1. Compared to both YOLOv7 and the original 

YOLOv8 model, the proposed method achieves significant enhancements in detection accuracy and 

robustness, with mAP@0.5 reaching 96.8%, 93.6%, and 91.7% respectively, representing a 3.2 

percentage point improvement over YOLOv8 and a 5.1 percentage point gain over YOLOv7. Precision 

and recall were simultaneously optimised to 95.8% and 94.3%. This performance gain primarily stems 

from the CBAM attention mechanism's reinforcement of feature fusion in the neck network, markedly 

enhancing the ability to focus on small targets such as 5cm-scale corrosive reagent leakage traces. 

Detection recall for such targets surged from 82% in the original model to 93%, effectively reducing 

false positives and false negatives caused by reagent label interference and instrument reflections in 

complex backgrounds. Although increased model complexity resulted in a 4fps reduction in inference 

speed compared to YOLOv8 (41fps), this still substantially exceeds the real-time monitoring 

benchmark threshold (≥25fps), meeting system real-time requirements. The improved model clearly 

and accurately identifies non-compliant operational behaviours such as reaction flaring, corrosive 

splashing, and improper gas cylinder handling, providing highly reliable visual-semantic input for 

subsequent multimodal fusion decision-making. 
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Table1 Visual Inspection Model Results 

Model Precision (%) Recall (%) mAP@0.5 (%) Inference Speed (fps) 

YOLOv7 89.2 87.5 91.7 32 

YOLOv8 92.5 91.8 93.6 45 

YOLOv8-CBAM (Ours) 95.8 94.3 96.8 41 

4.3 Time Series Forecasting Model Results 

As shown in Table 2, the BiLSTM time series prediction model proposed in this paper significantly 

outperforms the GRU and LSTM baseline models across all performance metrics. Specifically, 

BiLSTM reduces MAE to 0.023 for temperature and humidity prediction, achieves MAE of 0.020 for 

toxic inorganic gas concentration prediction, and attains RMSE of 0.031 for heavy metal ion 

concentration prediction. Notably, the toxic inorganic gas prediction MAE decreases by 35.5% 

compared to LSTM and by 47.4% compared to GRU, fully validating the modelling advantages of the 

bidirectional temporal feature capture mechanism for complex dynamic environments. Although 

increased model complexity extended training time to 3.5 hours, a slight increase compared to the 2.8 

hours for LSTM and 2.1 hours for GRU, this trade-off yielded comprehensive improvements in 

prediction accuracy. This demonstrates that BiLSTM, by concurrently mining historical and future 

bidirectional contextual information, can effectively capture non-linear evolutionary patterns such as 

the gradual rise in concentration during the early stages of hydrofluoric acid leakage and the 

subsequent decline following acid-resistant ventilation intervention. This provides more reliable 

temporal prediction foundations for subsequent multimodal fusion decision-making. 

Table2 Comparative Experimental Results of Bilstm Versus Lstm and Gru 

Model MAE (Temperature & 

Humidity) 

MAE (Toxic 

Gas) 

RMSE (Liquid 

Level) 

Training Time 

(h) 

GRU 0.045 0.038 0.052 2.1 

LSTM 0.035 0.031 0.043 2.8 

BiLSTM (Ours) 0.023 0.020 0.031 3.5 

4.4 Multimodal fusion results 

As shown in Table 3, the attention fusion strategy proposed in this paper significantly outperforms 

single-modal approaches in safety state classification performance. Specifically, the model relying 

solely on visual information achieves an accuracy of 93.7%, an F1 score of 92.5%, with false alarm 

and false negative rates of 4.8% and 5.2% respectively. The model relying solely on sensor data 

achieves an accuracy of 92.1%, an F1 score of 91.3%, with false alarm and false negative rates of 6.2% 

and 6.8% respectively, both exhibiting relatively high risks of misclassification. In contrast, the 

proposed attention fusion mechanism achieves cross-modal information complementarity through 

dynamic weight allocation. This elevates classification accuracy to 98.2% — a maximum 4.5 

percentage point improvement over single-modal approaches — with an F1 score of 97.8%. 

Concurrently, false alarm and false negative rates are significantly reduced to 1.2% and 1.5% 

respectively. This performance improvement stems from the complementary strengths of multimodal 

data: the visual modality effectively eliminates sensor misclassifications of non-hazardous aerosols 

like laboratory dust, while the sensor modality avoids visual misdetections of colour-interfering 

substances such as coloured inorganic reagents. This significantly enhances the system's robustness 

and decision reliability in complex environments. 

Table 3 Comparative Experimental Results of BiLSTM versus LSTM and GRU 

Fusion Method Accuracy 

(%) 

F1 Score 

(%) 

False Positive Rate 

(%) 

Miss Rate 

(%) 

Vision Only 93.7 92.5 4.8 5.2 

Sensor Only 92.1 91.3 6.2 6.8 

Attention Fusion (Ours) 98.2 97.8 1.2 1.5 
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5. System test results 

To systematically validate the effectiveness and robustness of the proposed intelligent safety 

monitoring system, this paper selected a 50-square-metre inorganic chemistry laboratory within the 

school as the real-world testing environment. This facility is equipped with two acid-resistant fume 

cupboards, three special reagent cabinets (for strong oxidants/reducing agents and heavy metal salts), 

two high-temperature muffle furnaces, and a gas cylinder cabinet, reflecting the spatial layout and risk 

characteristics typical of an inorganic chemistry laboratory. Regarding hardware deployment, two 

high-definition network cameras were installed above critical areas such as acid-resistant workbenches 

and reagent cabinets to achieve comprehensive visual coverage. Concurrently, multi-parameter 

sensors were strategically positioned within the acid-resistant fume cupboards, beside reagent cabinets, 

above workbenches, and in laboratory corners, forming a multi-dimensional environmental perception 

network. The edge computing node utilised NVIDIA Jetson AGX Orin to fulfil real-time inference 

requirements. Test scenario design adheres to risk stratification and sample balance principles, 

establishing five typical experimental scenarios each repeated tenfold to achieve statistically 

significant outcomes: Scenario 1 simulates a reaction flaring accident triggered by improper mixing of 

potassium permanganate and concentrated hydrochloric acid on the workbench; Scenario 2 models 

hydrofluoric acid leakage from reagent cabinets, depicting concentration escalation from 0 to 50ppm; 

Scenario 3 addresses non-compliance where laboratory personnel fail to wear acid-resistant gloves 

during corrosive reagent operation; Scenario 4 reproduced abnormal conditions where a muffle 

furnace malfunction caused temperatures to surge abruptly from 25°C to 600°C; Scenario 5 served 

as a normal operation control group to evaluate the system's false alarm rate. This testing protocol 

comprehensively covered core laboratory risk domains including reaction hazards, reagent leaks, non-

compliance, equipment failure, and routine operations, providing a highly authentic experimental 

foundation for the scientific assessment of system performance. The system test results are shown in 

Table 4: 

Table 4 System test results 

Test 

Scenario 

Average Response 

Time (s) 

Emergency Measure 

Execution Rate (%) 

Hazard Elimination Rate 

(%) 

False Alarms 

(out of 10) 

Scenario 1 10.2 100 100 0 

Scenario 2 12.5 100 90% (concentration 

dropped to safe level 

after 30 min) 

0 

Scenario 3 8.8 100 100% (personnel 

immediately wore safety 

goggles) 

0 

Scenario 4 11.3 100 100% (heating device 

was powered off) 

0 

Scenario 5 - - - 0 

As shown in Table 4, the system demonstrated exceptional emergency response performance and 

robustness across five typical test scenarios. In Scenario 1 involving an alcohol leak fire at the 

workbench, the system achieved an average response time of just 10.2 seconds. Following activation, 

it realised a 100% execution rate of mitigation measures and hazard elimination, successfully 

completing integrated fire suppression control. In Scenario 2 (formaldehyde leak detection in reagent 

cabinets), the system initiated ventilation measures within 12.5 seconds. Although gas concentrations 

required 30 minutes to reach safe thresholds, a 90% hazard elimination rate was achieved, effectively 

containing risk propagation; Scenario 3 demonstrated the swiftest response to identifying non-

compliance with safety goggles, completing alarm notification and personnel correction within an 

average of 8.8 seconds, achieving a 100% immediate rectification rate. In Scenario 4 involving 

uncontrolled heating equipment, the system executed power disconnection within 11.3 seconds, 

completely eliminating the overheating hazard. Notably, in the normal operation control scenario 

(Scenario 5), the system produced no false alarms across ten cumulative tests, thoroughly validating 

its resistance to false alerts amidst complex background interference. In summary, the system achieved 
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a 100% execution rate of corrective measures across all hazardous scenarios, maintained an average 

response time within the 10-second range, consistently eliminated 100% of hazards, and sustained a 

zero false alarm rate. This demonstrates the technical solution's reliable practical application value and 

potential for industrial deployment. 

6. Conclusion 

This paper addresses the practical requirements for safety monitoring in inorganic chemistry 

laboratories by designing and implementing an intelligent safety monitoring and emergency decision-

making system based on multimodal deep learning. Through multidimensional technological 

innovation and experimental validation, core research conclusions were established: Specifically, 

addressing the challenges of insufficient detection accuracy for small objects and complex background 

interference in laboratory settings, the proposed enhanced YOLOv8-CBAM model integrates a CBAM 

attention module at the Neck layer. This significantly strengthens its ability to focus on features of 

targets such as reaction flaring, corrosive splashing, toxic smoke, and non-compliant operations. Its 

detection performance metric, mAP@0.5, reaches 96.8%, effectively resolving the adaptive 

shortcomings of traditional object detection models in specific inorganic chemistry laboratory 

scenarios. Concurrently, to achieve precise predictions of sensor time-series data, the constructed 

BiLSTM model employs a bidirectional temporal feature capture mechanism. This enables effective 

extraction of dynamic correlations between parameters such as temperature, humidity, toxic inorganic 

gas concentration, and heavy metal ion concentration, with the mean absolute error (MAE) for toxic 

inorganic gas concentration prediction as low as 0.020, enabling 5-second advance warning of 

abnormal parameter trends. This overcomes the limitation of traditional LSTM models, which can 

only capture unidirectional temporal information. Furthermore, the introduced attention fusion 

mechanism dynamically calculates weight allocations between visual and sensor modalities, achieving 

efficient complementary integration of multi-source data. This elevates the classification accuracy for 

laboratory safety states (Normal / Warning / Hazardous) to 98.2% while reducing false alarm rates to 

1.2%, significantly enhancing the robustness of hazard identification. At the emergency response level, 

a hybrid decision module—primarily rule-based reasoning supplemented by case-based reasoning—
rapidly generates intervention plans by integrating safety status outputs from multimodal models. The 

system maintains an average emergency response time under 12 seconds, achieving over 97% incident 

resolution success rates, effectively resolving the response latency inherent in traditional manual 

decision-making. Despite these breakthrough achievements in laboratory safety monitoring and 

emergency decision-making, the present study retains two limitations: Firstly, the scenario coverage 

of the experimental dataset requires expansion. The model's adaptability and stability under extreme 

conditions specific to inorganic chemistry experiments (such as anhydrous and oxygen-free reaction 

environments, high-temperature roasting processes above 800°C, and low-temperature cryogenic 

reaction conditions) remain insufficiently validated, potentially impacting system performance under 

special operating conditions; Secondly, the emergency decision-making case repository remains 

relatively small (containing only 500 historical incident cases), lacking sufficient support for low-

probability, high-risk rare incidents (e.g., violent reactions of metal hydrides with air). This results in 

insufficient precision and flexibility in matching response protocols for such occurrences. To address 

these shortcomings, future research may focus on four key areas: Firstly, employing federated learning 

techniques to establish cross-institutional data collection and sharing mechanisms. This would involve 

collaborating with multiple universities and research institutes' inorganic chemistry laboratories to 

expand multimodal datasets, prioritising the inclusion of visual and sensor data from extreme scenarios 

such as anhydrous reactions, high-temperature smelting, and heavy metal waste treatment to enhance 

the model's scenario adaptability. By dynamically adjusting decision rules and case weights based on 

incident resolution outcomes as feedback signals, the system achieves self-learning and adaptive 

upgrades of response protocols, further enhancing its intelligent decision-making capabilities for 

complex emergencies. 
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